Desperately seeking software perfection

Xavier Leroy
Inria Paris-Rocquencourt, projet Gallium

Colloquium d’informatique, UPMC, octobre 2015

Part |

Imperfect software

Software crashes. . .

Paris highway Las Vegas billboard

Software crashes. . .

this is the

firs
start
223t dour conputer. 1F

eck for viruses on your
rd drives or hard drive
make sure it is_properl
to check for
start your computer.

Metro station, Manhattan Heathrow airport

Software crashes. . .

Olympic games, 2008

Nine Inch Nails concert

Software has security holes. ..

Major Web security issues (TLS protocol, Web servers) since 2009:

Renegotiation
RC4 attacks
BEAST

CRIME
Heartbleed
ChangeCipher
POODLE

FREAK & Logjam

Proportion of major Web sites
B insecure [possibly vulnerable B not vulnerable [unknown

Therac 25 radiation machine
(3 patients dead following
massive overdose.)

Software Kkills. . .

Electrodes

Newborn monitor
(several cases of sudden infant death
where the alarm did not ring)

Part Il

A glimpse of hope: Critical avionics
software

Running example: fly-by-wire software

Trimmable Horizontal Rudders (x2)

Sfabilizer\ f 7
Slats (6x2) Flaps (3x2) Elevators (2x2)

a o L
1 o —_

Droop e o Pa
Nose (sz)\y/ “spoilers Ailerons (3x2)
. ’é &(8x2:/

Auto-pilot
A
Fly By wire
Computer
’\/_' Aircraft
ontrol surface| move
PILOT Ordeﬂ position

(G. Ladier)

Timeline

1958 1969 1984 1995
Avro CF 105 Concorde Airbus 320 Boeing 777
(analog) (analog) (digital) (digital)
T RESEARCH :

DES AVIONS PAPER

CAD: COMPUTER- 77"
AIDED DISASTER

poses tests @

Boeing oP | software

' safety-crltlca

Functions of FBW software

High AOA Load Factor Pitch Attitude
Protection Limitation Protection Execute pilot’s Commands
[“normALLAW ‘

High Speed Flight Augmentation Bank Angle
Protection (Yaw) Protection

W

Flight assistance: keep aircraft
within safe flight envelope.

Low Speed Load Factor
Stability Limitation

High Speed Yaw Damping
Stability Only

Fuel economy: minimize drag.

:

Active damping of oscillations.

Load Factor
Limitation
ABNORMAL ALTERNATE LAW w/o Speed Stability
Yaw Damping
Only

r " 7°

Anatomy of FBW systems

Two-part software:

e A minimalistic operating system (©)
(Boot, self-tests, communications over buses, static
scheduling of periodic tasks. Generally hand-crafted,
sometimes off-the-shelf.)

e Mostly: control-command code (Simulink, Scade)
(= discretized differential equations)

Hard real-time.

100k — 1M LOC of C code, but mostly generated from Scade /
Simulink.

Asymmetric redundancy (e.g. 3 primary units, 3 secondary).

Implementing a control law

“Hello, world" example: PID controller.

Response 1o Step Input Kp=1.7 Ki=20

Fosition (rad)

=
@

(=3

o1 0.3 04

T\meo éecs)

Error e(t) = desired state(t) — current state(t).

t

d

Action a(t) = Kye(t) + Ki / e(t)ot + Ky < (1)
0

(Proportional) (Integral) (Derivative)

Implementing a control law

Mechanical (e.g. pneumatic):

R OPOA TPRHE. (IR
r s ma el

ABAISTARLL

A D LB f g
J meamy

Implementing a control law

Analog electronics:

ci Rf cf
Il MW |

Vi ANV

Implementing a control law

In software (today's favorite solution):

previous_error = 0; integral = O
loop forever:
error = setpoint - actual_position
integral = integral + error * dt
derivative = (error - previous_error) / dt
output = Kp * error + Ki * integral + Kd * derivative
previous_error = error
wait(dt)

Block diagrams

(Simulink, Scade, Scicos, etc)

This kind of code is rarely hand-written, but rather auto-generated
from block diagrams:

Hep

Block diagrams and reactive languages

Ak
(N. Halbwachs)

In the case of Scade, this diagram is a graphical syntax for the
Lustre reactive language:

error = setpoint - position

integral = (0 -> pre(integral)) + error * dt

derivative = (error - (0 -> pre(error))) / dt
output = Kp * error + Ki * integral + Kd * derivative

(= Time-indexed series defined by recursive equations.)

Block diagrams and reactive languages

Control law
a(t) = Kpe(t) + Ki f5 e t)dt+Kddte(t)

(modeliM

Block diagram

(discretization)

Recursive sequences

(syntax) i
semantics in in—1+ ep.dt
() (en - en—l)/dt

Lustre code ——————— d» _
ern + Kiin + Kgdn

On
(code generahN /hand—coding)

C code

A successful Domain Specific Language

“Speaks” the language of users who are not programmers.
(Pseudo-circuits in graphical syntax.)

Supports automatic generation of efficient code.
(The model is the program.)

Reduced expressiveness.
(A language of boxes, wires, latches and clocks; Turing-incomplete)

Supports formal verification.

The certification process (DO-178)

.

TYPECERTIFICATE.

N CERTIFICATION

Design and development process is meticulous and fully
documented.

Rigorous validation at multiple levels (from design to product):
e Reviews (qualitative)

e Analyses (quantitative)

Test, test!, test!!, test, test, test, test, ...

Recent development: use of formal verification tools.

From unit testing. ..

double max(double x, double y)

{

if (x >= y) return x; else return y;

max(0,0) =0
max(0,1) =1
max(0,-1) =
max(0,3.14) 3.14
max(0,inf) = inf
max(0,-inf) = 0
max(1,0) =1
max(1,1) 1

0

max(1,-1) =1
max(1,3.14) = 3.14
max(1l,inf) = inf

max (inf,0) = inf
max (inf,-inf) = inf
max(nan,0) = 0
max(0,nan) = nan

. to integration testing. . .

. to exploration on an lron Bird. ..

. to test flights

Part Il

Tool-assisted formal verification

Beyond testing: formal verification

Program testing can be used to show the presence of bugs,

but never to show their absence!
(E.W.Dijkstra, 1972)

Formal verification of software:
verify, possibly infer, properties that hold of all possible executions

of a program.

Used in some industrial contexts (airplanes, railways)
e To obtain independent guarantees (besides testing).
e To obtain stronger guarantees (than with testing).

e To replace costly unit tests.

A panorama of verification tools

Automatic . |
Static analyzers
(6]

\
\
\

Modekcheckers

\
\
N\
N

Deductive \prqgram provers
e \\\

. Proof _assistants
Interactive o

A | A

10° LOC

102 LOC

Basic safety Full correctness

Static analysis: automatically infer simple properties of one variable

(x € [Ny, N2], x mod N =0, etc) or several (x +y < z).

Automatic

Interactive

i

)

A panorama of verification tools

Static analyzers
(6]

\
\
\

Modekcheckers

\
\
N\
N

Deductive \prqgram provers
e \\\

~_

\\Proef\a‘s‘s\i§t_a!nts

10° LOC

102 LOC

Basic safety Full correctness

Model checking: automatically check that some “bad” program
points are not reachable.

A panorama of verification tools

I\ | A
Automatic .
Static analyzers
Q
\\
\
\\
Model checkers
.\\\
Deductive \prqgram provers
. \\\
) " Proof assistants
Interactive o —--

10° LOC

102 LOC

Basic safety Full correctness

Program proof: show that
preconditions = invariants = postconditions
using automated theorem provers.

Automatic

Interactive

i

)

A panorama of verification tools

Static analyzers
(6]

\
\
\

Modekcheckers

\
\
N\
N

Deductive \prqgram provers
e \\\

- "Proof assistants

10° LOC

102 LOC

Basic safety Full correctness

Proof assistants: conduct mathematical proofs in interaction with
the user; re-check the proofs for correctness.

Example: computing prime numbers

int al] = new int[n];
alo] = 2;
loop:
for (int i =1, m=3; i <n;m=m+ 2) {
int j = 0;
while (j < i A aljl <= ym) {
if (alj] divides m) continue loop;
j=3+1;
}
ali] =m; 1 =1 + 1;

}

Goal: compute the first n prime numbers.

Algorithm: try successive odd numbers m, striking out those
divisible by primes already found.

Example: computing prime numbers

int al] = new int[n];
alo] = 2;
loop:
for (int i =1, m=3; i <n;m=m+ 2) {
int j = 0;
while (j < i A aljl <= ym) {
if (alj] divides m) continue loop;
j=3+1;
}
ali] =m; 1 =1 + 1;

}

Static analyzer: can infer 1 < i < nand 0 <j < i inside the loop,
hence array accesses are safe (within bounds).

Example: computing prime numbers

int al] = new int[n];
alo] = 2;
loop:
for (int i =1, m=3; i <n;m=m+ 2) {
int j = 0;
while (j < i A aljl <= ym) {
if (alj] divides m) continue loop;
j=3+1;
}
ali] =m; 1 =1 + 1;

}

Automatic program prover: can prove partial correctness if the user
provides detailed loop invariants and simple axioms about primality
and divisibility. (Termination is harder to prove.)

Example: computing prime numbers

int a[] = new int[n];
a0l = 2;
loop:
for (int i =1, m=3; i <n;m=m+ 2) {
/* invariant:
Vk, 0< k <i = isprime(a[k])
Vp, 2<p<mAisprime(p) = Tk, 0< k<iNakl=p
Vk,m, 0<k<j<i = alk]<alj
*/

Automatic program prover: can prove partial correctness if the user
provides detailed loop invariants and simple axioms about primality
and divisibility. (Termination is harder to prove.)

Example: computing prime numbers
Knuth, The Art of Computer Programming, vol.1

int a[] = new int[n];

al0] = 2;

loop:
for (int i =1, m=3; i<n;m=m+ 2) {
int j = 0;
while (5—<—4A aljl <= ym) {

if (alj] divides m) continue loop;

i+

Knuth's cunning optimization: the test j < i is redundant and can

be omitted. Can you see why?

Example: computing prime numbers
Knuth, The Art of Computer Programming, vol.1

int a[] = new int[n];

alo] = 2;
loop:
for (int i =1, m=3; i<n;m=m+ 2) {

int j = 0;
while (5—<—4A aljl <= ym) {

if (alj] divides m) continue loop;

i+

Knuth's cunning optimization: the test j < i is redundant and can
be omitted. Can you see why? Because of Bertrand’s postulate!

Theorem (Chebychev)

For all n > 1, there exists a prime p in [n,2n].
(Coq proof: Laurent Théry, 2002.)

Success stories in verification of
avionics code

Simulink, Scade

AiT WCET

(precise time bounds) BediEhe

000

Success stories in verification of
avionics code

Simulink, Scade

Astrée
(absence of run-time errors,
incl. floating-point)

X

AiT WCET
(precise time bounds)

Executable

Success stories in verification of
avionics code

Simulink, Scade

Caveat
(program proof) (*)

Astrée
(absence of run-time errors,
incl. floating-point)

AiT WCET
(precise time bounds)

Executable

(*) Motto: “unit proofs as a replacement for unit tests”

Success stories in verification of
avionics code

Rockwell-Collins toolchain Simulink. Scade
(model-checking + proof) '

Caveat
(program proof) (*)

Astrée
(absence of run-time errors,
incl. floating-point)

AiT WCET
(precise time bounds)

Executable

(*) Motto: “unit proofs as a replacement for unit tests”

Success stories in verification of
systems code

The selL4 secure microkernel: (NICTA, 2009)
e Full correctness proof of a high-performance microkernel.
e Using the Isabelle/HOL proof assistant + custom automation.
e 8 KLOC of C code, 200 KLOC proof, 20 person.years.

e The largest deductive verification of a software system ever.

The FSCQ file system: (MIT, 2015)
e Formally proved correct even in the presence of crashes.
e Using the Coq proof assistant + custom automation.

e 30 KLOC proof, 1.5 person.years.

Part IV

Formally-verified compilation

Trust in software verification

Simulation ----- Simulink, Scade

Model-checking i Code generator ?
Program proof -----

Static analysis Compiler ?

Testing ~ ----- Executable

The unsoundness risk: Are verification tools semantically sound?

The miscompilation risk: Are compilers semantics-preserving?

Miscompilation happens

NULLSTONE isolated defects [in integer division] in twelve of
twenty commercially available compilers that were evaluated.

http://www.nullstone.com/htmls/category/divide.htm

We tested thirteen production-quality C compilers and, for
each, found situations in which the compiler generated
incorrect code for accessing volatile variables.

E. Eide & J. Regehr, EMSOFT 2008

To improve the quality of C compilers, we created Csmith, a
randomized test-case generation tool, and spent three years
using it to find compiler bugs. During this period we reported
more than 325 previously unknown bugs to compiler
developers. Every compiler we tested was found to crash and
also to silently generate wrong code when presented with valid
input.

X. Yang, Y. Chen, E. Eide & J. Regehr, PLDI 2011

An example of optimizing compilation

double dotproduct(int n, double * a, double * b)
{
double dp = 0.0;
int i;
for (i = 0; i < mn; i++) dp += al[i]l * b[il;
return dp;

}

Compiled with a good compiler, then manually decompiled back to

C. ..

double dotproduct(int n, double a[l, double b[l) {

L17:

Li6:

L1i8:

L19:

LS5:

L14:

dp = 0.0;

if (n <= 0) goto L5;

r2 =n - 3; f1 = 0.0; rl1 = 0; £10 = 0.0;
if (r2 > n || r2 <= 0) goto L19;
prefetch(al16]); prefetch(b[16]);

if (4 >= r2) goto L14;

prefetch(al20]); prefetch(b[20]);

£12 = a[0]; £13 = b[0]; f14 = a[1]; £15 = b[1];

ri = 8; if (8 >= r2) goto L16;

f16 = b[2]; £f18 = a[2]; 17 = £12 * £13;
£19 = b[3]; £20 = a[3]; f15 = f14 * f15;
£12 = a[4]; f16 = £18 * f16;

f19 =

f11 += £17; r1 += 4; f10 += f15;
f156 =

f1 += £16; dp += £19; b += 4;

if (r1 < r2) goto L17;

f11

b[5]; prefetch(a[20]); prefetch(b[24]);

0.0;

£29 * £19; £13 = b[4]; a += 4; f14 = a[1];

f15 = f14 x £15; £21 = b[2]; £23 = a[2]; 22 = f12

£24 = b[3]; £25 = a[3]; £21 = £23 * £21;
£12 = a[4]; £13 = b[4]; £24 = £25 * £24;
a +=4; b += 4; f14 = a[8]; f15 = b[8];
£11 += £22; £1 += £21; dp += £24;

£26 = b[2]; £27 = a[2]; f14 = f14 * £15;

£10

f10

£28 = b[3]; £29 = a[3]; £12 = £12 * £13; £26 = £27

a += 4; £28 = £29 * £28; b += 4;
£10 += f14; f11 += £12; f1 += £26;

dp += £28; dp += f1; dp += £10; dp += f11;

if (r1 >= n) goto L5;

£30 = a[0]; £f18 = b[0]; rl += 1; a += 8; f18 = £30

dp += £18;
if (r1 < n) goto L19;
return dp;

*

+

*

£13;

£15;

£26;

£18;

£12 = a[0]; £13 = b[0]; f14 = a[1]; £f15 = b[1]; goto L18;

b += 8;

L17: f16 = b[2]; f18 = a[2]; f17 = f12 *x f13;
£f19 = b[3]; £20 = a[3]; f15 = f14 x f15;
£f12 = a[4]; f16 = £18 * f16;
£19 = £29 *x £19; f13 = b[4]; a += 4; f14 = a[1];
f11 += £17; rl += 4; £10 += £15;
f15 = b[5]; prefetch(al[20]); prefetch(b[24]);

f1 += £16; dp += £19; b += 4;
if (r1 < r2) goto L17;

double dotproduct(int n, double a[l, double b[l) {

Li6:

L1i8:

L19:

LS:

L14:

dp = 0.0;

if (n <= 0) goto L5;

r2 =n - 3; f1 = 0.0; rl1 = 0; £10 = 0.0;
if (r2 > n || r2 <= 0) goto L19;
prefetch(al16]); prefetch(b[16]);

if (4 >= r2) goto L14;

prefetch(al20]); prefetch(b[20]);

£12 = a[0]; £13 = b[0]; f14 = a[1]; £15 = b[1];

ri = 8; if (8 >= r2) goto L16;

f11

0.0;

f15 = f14 x £15; £21 = b[2]; £23 = a[2]; £f22 = f12

£24 = b[3]; £25 = a[3]; £21 = £23 * f21
£12 = a[4]; £13 = b[4]; £24 = £25 * £24;
a +=4; b += 4; f14 = a[8]; f15 = b[8];
£11 += £22; £1 += £21; dp += £24;

£26 = b[2]; £27 = a[2]; f14 = f14 * £15;

£10

f10

£28 = b[3]; £29 = a[3]; £12 = £12 * £13; £26 = £27

a += 4; £28 = £29 * £28; b += 4;
£10 += £14; f11 += £12; £1 += £26;

dp += £28; dp += f1; dp += £10; dp += f11;

if (r1 >= n) goto L5;

£30 = a[0]; £f18 = b[0]; rl += 1; a += 8; f18 = £30

dp += £18;
if (r1 < n) goto L19;
return dp;

*

+

*

£13;

£15;

£26;

£18;

£12 = a[0]; £13 = b[0]; f14 = a[1]; £f15 = b[1]; goto L18;

b += 8;

Addressing miscompilation

Best industrial practices: more testing; manual reviews of
generated assembly code; turn optimizations off; ...

A more radical solution: why not formally verify the compiler itself?

After all, compilers have simple specifications:
If compilation succeeds, the generated code should
behave as prescribed by the semantics of the source
program.

As a corollary, we obtain:
Any safety property of the observable behavior of the
source program carries over to the generated executable
code.

An old idea. ..

John McCarthy
James Painter!

CORRECTNESS OF A COMPILER
FOR ARITHMETIC EXPRESSIONS®

1. Introduction. This paper contains a proof of the correctness of a simple
compiling algorithm for compiling arithmetic expressions into machine
language.

The definition of correctness, the formalism used to express the descrip-
tion of source language, object language and compiler, and the methods
of proof are all intended to serve as prototypes for the more complicated
task of proving the correctness of usable compilers. The ultimate goal,
as outlined in references [1], [2], [3] and [4] is to make it possible to use
a computer to check proofs that compilers are correct.

Mathematical Aspects of Computer Science, 1967

An old idea. ..

3

Proving Compiler Correctness
in a Mechanized Logic

R. l\/lilﬁer and R. Weyhrauch

Computer Science Department
Stanford University

Abstract

We discuss the task of machine-checking the proof of a simple compiling
algorithm. The proof-checking program is LCF, an implementation of a logic
for computable. functions due to Dana Scott, in which the abstract syntax
and extensional semantics of programming languages can be naturally
expressed. The source language in our example is a simple ALGor-like
language with assignments, conditionals, whiles and compound statements.
The target language is an assembly language for a machine with a pushdown
store. Algebraic methods are used to give structure to the proof, which is
presented enly in outline. However, we present in full the expression-compiling
part of the algorithm. More than half of the complete proof has been machine
checked, and we anticipate no difficulty with the remainder. We discuss our
experience in conducting the proof, which indicates that a large part of it
may be automated to reduce the human contribution.

Machine Intelligence (7), 1972.

The CompCert project
(X.Leroy, S.Blazy, et al)

Develop and prove correct a realistic compiler, usable for critical
embedded software.

e Source language: a very large subset of C99.

e Target language: PowerPC/ARM/x86 assembly.

e Generates reasonably compact and fast code
= careful code generation; some optimizations.

Note: compiler written from scratch, along with its proof; not
trying to prove an existing compiler.

The formally verified part of the compiler

side-effects out_ {] type elimination]
CompCert C ! = C#minor
of expressions |) loop simplifications

stack allocation

Optimizations: constant prop., CSE,

inlining, tail calls of "&" variables

CFG construction (.) instruction (.
RTL | CminorSel = , Cminor
) expr. decomp. \) selection

register allocation (IRC)

calling conventions

Y

| linearization () layout of

LTL > Linear > Mach
of the CFG \ !) stack frames

as

ge on
Y
[Asm x86] [Asm ARM Asm PPC

Formally verified using Coq

The correctness proof (semantic preservation) for the compiler is
entirely machine-checked, using the Coq proof assistant.

Theorem transf_c_program_preservation:
forall p tp beh,
transf_c_program p = 0K tp —>
program_behaves (Asm.semantics tp) beh ->
exists beh’, program_behaves (Csem.semantics p) beh’
/\ behavior_improves beh’ beh.

Shows refinement of observable behaviors beh:

e Reduction of internal nondeterminism
(e.g. choose one evaluation order among the several allowed by C)

e Replacement of run-time errors by more defined behaviors
(e.g. optimize away a division by zero)

Compiler verification patterns (for each pass)

Verified transformation Verified translation validation

transformation transformation

—]

validator
External solver with verified validation

transformation

I = formally verified
checker

B — not verified

untrusted solver

Proof effort

- 8% | 17% 54% .

Code Sem. Claims Proof scripts Misc

100,000 lines of Coq.
Including 15000 lines of “source code” (= 60,000 lines of Java).
6 person.years

Low proof automation (could be improved).

Programmed (mostly) in Coq

All the verified parts of the compiler are programmed directly in
Coq's specification language, using pure functional style.

e Monads to handle errors and mutable state.

e Purely functional data structures.

Coq's extraction mechanism produces executable Caml code from
these specifications.

Claim: purely functional programming is the shortest path to
writing and proving a program.

The whole Compcert compiler

preprocessing, parsing, AST construction
C source , .
type-checking, de-sugaring
. . -
Register allocation
]

Code linearization heuristics »

assembling
Executable —
linking

Part of the TCB
Not part of the TCB

printing! of
Assembly '
asm syntax

Not proved
(hand-written in Caml)

= ASTC

131dwod payLIBA

Y
AST Asm

Proved in Coq
(extracted to Caml)

(On a Power 7 processor)

Performance of generated code

gcc -03

B gcc -00 mm CompCerimm gcc -01

Execution time

Jaoea1hed
ssz|

MZ|
spoo.e
uijad
dwoyd
109s1q
yoewa
|es3oads
S1IgaAISU
SA3ISU
Apoqu
10iqopuew
apI109anuy
yomyuuey
sea41hieulq
18|
yousqewe
soe

Teys

3

1osb

RE;

A tangible increase in quality

The striking thing about our CompCert results is that the
middleend bugs we found in all other compilers are
absent. As of early 2011, the under-development version
of CompCert is the only compiler we have tested for
which Csmith cannot find wrong-code errors. This is not
for lack of trying: we have devoted about six CPU-years
to the task. The apparent unbreakability of CompCert
supports a strong argument that developing compiler
optimizations within a proof framework, where safety
checks are explicit and machine-checked, has tangible
benefits for compiler users.

X. Yang, Y. Chen, E. Eide, J. Regehr, PLDI 2011

Part V

Conclusions

Is software perfection within reach?

Perhaps. But at a minimum we need:

e Mathematical specifications (e.g. control-command)
e Appropriate programming languages (e.g. Scade)
e Serious testing (of the aircraft kind)
e Formal verification (Astrée, CADP, Frama-C, ...)
e Trustworthy tools (CompCert, Verasco)
e Theorem proving (Coq, Z3, Alt-Ergo, ...)

. and further research!

	Imperfect software
	A glimpse of hope: Critical avionics software
	Tool-assisted formal verification
	Formally-verified compilation
	Conclusions

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	anm0:

