Abstract interpretation

és

Wit Patrick Cousot

%N New York University

iversi

Amphi 15

4, place Jussieu
75005 Paris
Metro Jussieu

29 Septembre 2016
a 18h00

The complexity of large programs grows faster than the intellectual ability of programmers in
charge of their development and maintenance. The direct consequence is a lot of errors and bugs
in programs mostly debugged by their end-users. Programmers are not responsible for these
bugs. They are not required to produce provably safe and secure programs. This is because
professionals are only required to apply state of the art techniques, that is testing on finitely many
cases. This state of the art is changing rapidly and so will irresponsibility, as in other
manufacturing disciples.
Scalable and cost-effective tools have appeared recently that can avoid bugs with possible
dramatic consequences for example in transportation, banks, privacy of social networks, etc.
Entirely automatic, they are able to capture all bugs involving the violation of software healthiness
rules such as the use of operations with arguments for which they are undefined.
These tools are formally founded on abstract interpretation. They are based on a definition of the
semantics of programming languages specifying all possible executions of the programs of a
language. Program properties of interest are abstractions of these semantics abstracting away all
aspects of the semantics not relevant to a particular reasoning on programs. This yields proof
methods.
Full automation is more difficult because of undecidability: programs cannot always prove
programs correct in finite time and memory. Further abstractions are therefore necessary for
automation, which introduce imprecision. Bugs may be signalled that are impossible in any
execution (but still none is forgotten). This has an economic cost, much less than testing.
Moreover, the best static analysis tools are able to reduce these false alarms to almost zero. A
. time-consuming and error-prone task which is too difficult, if not impossible for programmers,
= r,—:‘.WHh;O‘i.lt tools.

~ Patrick Cousot received the Doctor Engineer degree in Computer Science and the Doctor &s
Sciences degree in Mathematics from the University Joseph Fourier of Grenoble, France. He was
a Research Scientist at the French National Center for Scientific Research at the University
Joseph Fourier of Grenoble, France, then professor at the University of Metz, the Ecole
: Polytechnique, the Ecole Normale Supérleue. . 'Franoe He is Silver Professor of Computer
contact : colloquiume@lip6.fr Science at the Courant Institute of Mathematical Sciences, New York University, USA. Patrick
http://www.lip6.fr/colloquium/ Cousot IS the inventor, with Radhla Cousot. Of Absh'act Interpre%aﬁon 2 »
' N g .

UPMC

JA M1 SORBONNE UNIVERSITES

Colloquium d'Informatique

de I'UPMC Sorbonne Un

Vidéo disponible sur le site

af
(=3




