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NVM Characteristics
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NVM Use Case
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NVM NVM NVM NVM NVM NVM NVM NVM NVM NVM NVM

In-memory DB
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How Not to Program NVM
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Transfer(Acct from, Acct to, Money amount) {
from->balance -= amount;

to->balance += amount;

}

Cache

Processor

NVM
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Programming NVM, version 1
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Transfer(Acct from, Acct to, Money amount) {
from->balance -= amount;
to->balance += amount;
clflush(&from->balance); clflush(&to->balance);
sfence();

}

Processor

NVMCache
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Programming NVM, version 2
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Transfer(Acct from, Acct to, Money amount) {
atomic {
from->balance -= amount;
to->balance += amount;
clflush(&from->balance); clflush(&to->balance);
sfence();

}
}

Processor

NVMCache
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DRAM

Processor

NVM

OS
Process

Persistent HeapTransient
Memory

NVM Usage

11James Larus



NVM Lifecycle
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Terminate

Recover

Run1. Processes accesses NVM 
with individual load and 
store instructions

2. NVM must record a consistent 
memory state before termination, 
whether planned or unexpected

3. Need to ensure that NVM state is 
consistent in the environment in 
which execution restarts.
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When is NVM “Consistent”?
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NVM Heap

Program

Transient 
Memory

Restart

• NVM is consistent when restarted 
program produces same output as 
some execution of the program 
without a premature termination

• In general, error recovery is difficult 
if memory state does not satisfy 
program invariants

• Programs transition between 
invariant-satisfying states, but states 
in between are inconsistent (and 
impossible to recover)

• NVM should not be left in one of 
these inconsistent states
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Similar to Concurrency
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Program

Restart Program Program Program

Key difference: execution stops and only part of state is preserved. Some 
parallelization optimizations (such as privatization) can cause errors.
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Durable Transactions
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Transfer(Acct from, Acct to, Money amount) {
atomic {
from->balance -= amount;
to->balance += amount;

} //clflush(&from->balance); clflush(&to->balance); sfence();
}
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Software Transactional Memory
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Program NVM Heap

Undo log – save contents of overwritten 
memory locations, so they can be restored if 
transaction fails

Redo log – save updated values, so they can 
applied to memory if transaction succeeds

Log
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End of background
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Outline

• Efficient Logging
• Checkpointing with InCLL
• NVM Recovery
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Efficient Logging
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Cohen, Friedman, Larus. Efficient Logging 
in Non-Volatile Memory by Exploiting 
Coherency Protocols. OOPSLA 2017.
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NVM, Caches, and Logging
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NVM, Caches, and Logging
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Val:  0x1
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HeadNVM
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NVM Consistency Model

• Assumption 1: If store instruction S1 becomes visible to other threads 
before instruction S2, then the value written by S1 reaches the cache before 
the value written by S2

• Assumption 2: A cache line is transferred from the cache to the NVM 
atomically

• Persistent ordering
• !" #$% &'()*+ , !" #$% *'-.&- ,(!0) #$% !0

!" #$% !0
(explicit flush)

• !" #$% !0 ∧ 3 4" 5 3 40
4" #67 40

(granularity)
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Validity Bit
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Assume: log entry fits in cache 
line (64 bytes) and at least 
one bit (of 512) is unused

Log entry is valid if bit is set 
(unset)

Requires only 1 cache flush

Loc: 0xcfd100
Val:  0x1
Valid: 0x1

Loc: 0xcfd104
Val:  0x1
Valid: 0x1

Loc: 0xcfd108
Val:  0x1
Valid: 0x0

Loc: 0xcfd100
Val:  0x1
Valid: 0x1

Loc: 0xcfd104
Val:  0x1
Valid: 0x1

Loc: 0xcfd108
Val:  0x1
Valid: 0x0

Valid: 0x1

Valid: 0x1

Cache
Line
Flush
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What If Validity Bit Does Not Fit?

• Randomization
• Initialize log memory with 64-bit random value
• Write log entry in order
• If last word is not random value, then entry is valid (with high probability)

• Flexible validity bit
• Find first bit different between old cache line and new value
• If bit exists, use it as validity bit (otherwise, doesn’t matter)
• Store bit position in external table

• Almost always can find validity bit
• x64 address have 15 unused bit at top and typically 2/3 unused bits at bottom

• More details and examples in paper
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Performance
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Single-Trip Persistent Set (STPS)
Two cache flushes (TwoRounds)

YCSB write heavy benchmark (50% writes)
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Outline

• Efficient Logging
• Checkpointing with InCLL
• NVM Recovery
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Checkpointing

27

OS
Process

NVM

DRAM

NVM

Checkpointing used in high-performance 
computing (HPC)

Problems:
• Long pause while copying heap
• Recovery time proportional to 

checkpoint interval
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Fine-Grain Checkpointing of Masstree

• Masstree is cache-efficient combination of trie and B+ tree
• Mao, Kohler, Morris. Cache craftiness for fast multicore key-value storage. 

EuroSys ’12, 2012

• Used in Silo in-memory DB, key-value stores, etc.

• Make Masstree persistent by storing data structure in NVM

28

Cohen, Aksun, Larus. Fine-Grain 
Checkpointing with In Cache Line 
Logging. Submitted for Publication.
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Epochs

• Checkpoint with 64 ms epoch
• Masstree uses this interval for allocating/reclaiming nodes

• Execute wbinvd instruction to flush entire cache (to NVM)
• 430 – 550μs (< 1%)

• Failure during epoch causes execution to restart after previous epoch

• Need to undo changes written during a failed epoch
• In cache-line log (InCLL)
• Separate undo log for complicated, infrequent cases

29James Larus

Faisal Nawab, et al., Dalí: A 
Persistent Hash Map, 2017.



Masstree Leaf Node
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14 keys, values
(1 fewer than standard)
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Insert (With Empty Value Slot)
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Use undo log for node splitting

James Larus



Delete
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Update

33

pe
rm
ut
at
io
nI
nC
LL

pe
rm
ut
at
io
n

no
de
Ep
oc
h

1
Ke
y 
0

Ke
y 
7

Ke
y 
13

2 4

Va
lI
nC
LL
1

Va
l 
0

Va
l 
6

5

Va
l 
7

Va
l 
13

Va
lI
nC
LL
2

Ke
y 
8 .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3

Va
l 
6 
  

ne
w 
Va
l 
6

Encode index of 
modified value into 
unused bits in Val 
pointer

James Larus



Sequences of Operations
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Epoch in which permutation was checkpointed
• Only copy permutation when Epoch differs (once per epoch)
• Allows lazy restoration

Also encode epoch in unused bits

Mixed sequences of insert delete 
require redo logging because InCLL
can only hold one value
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Performance
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Performance (Added NVM Latency)
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Outline

• Efficient Logging
• Checkpointing with InCLL
• NVM Recovery
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NVM Recovery
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OS
Process

NVM

DRAM Persistent objects point to methods
• Code may be loaded at different 

address because of ASLR, 
debugger, profiler, code 
changes, …

Persistent store may be mapped 
to different virtual address

Persistent data must be consistent 
in recovered process, as well as 
being consistent when original 
process failsCohen, Aksun, Larus. Object-

Oriented Recovery for Non-Volatile 
Memory. OOPSLA 2018.
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Potential Inconsistencies

• Transient objects pointed to from NVM
• TCP sockets, locks, thread IDs, …

• Pointers between persistent objects if NVM mapped to different 
location
• Pointers to code and read-only data if text segment mapped 

differently

39James Larus



Previous Solutions

• Ignore the problem
• If NVM maps to different location, quit…

• Oops, there goes your data!
• If text maps differently, continue…

• Oops, there goes your data!
• If you use an old lock, fail…

• Oops, there goes your data!

• Use offsets between persistent objects instead of addresses
• Memory access becomes more expensive
• Requires extensive code changes

40James Larus



NVMReconstruction C++ Extension
struct kp_vt_struct {
kp_kvstore ∗parent; // back−pointer to parent kvstore
transient pthread_mutex_t ∗lock; // lock for this version table
...

reconstructor(kp_vt_struct∗ o) {
assert(kp_mutex_create("(∗new_vt)−>lock", &(o−>lock)) == 0);

}
}

void main() {
kp_vt_struct ∗new_vt = pnew kp_vt_struct;
...
pdelete new_vt;

}

41James Larus



Reconstructing an Object
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Type

• Every persistent object has a type header
• LLVM extension

• Zero transient fields
• Relocate pointers

• Inter NVM
• To code and read-only data

• Run reconstructor function
Type

Similar to relocation in garbage collector, except…
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Failure During Relocation
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Startup Latency
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Lazy Reconstruction
• Use VM page protection to detect first access to object
• Reconstruct all objects on page
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Performance Overhead
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Key-value store implemented in Atlas. 1GB NVM heap. YCSB write-heavy workload (50% writes).
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Conclusion

• NVM is persistent, directly accessible main memory
• Well suited for very large in-memory data structures (DB, graphs, etc.)

• Programs must be aware of “NVMness” to allow recovery

• Caches in existing memory systems make consistency expensive
• Key insight: memory consistently transfers entire cache line to NVM

• How much can we pack into a cache line?
• More than you think

• But, don’t forget recovery!
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