
Ecole polytechnique fédérale de Lausanne

1

EPFL School of Computer and Communication Science (IC)

James Larus
Professor and Dean, IC
October 23, 2018

Programming Non-Volatile Memory

James Larus

Joint Work

2

Nachshon Cohen, post doc

David Aksun, PhD student

James Larus

3

Core memory
was persistent

James Larus

Background on NVM

James Larus 4

Non-Volatile

Non-Volatile Memory (NVM)

5

SSD

Hard Disk

DRAM

Processor

NVM

James Larus

NVM Characteristics

6

NVM

Low
Power

Non-
Volatile

Direct
Access

Only consumes
power during

memory access

Retains data
without power

Direct
byte-granularity

data access

James Larus

NVM Use Case

7

NVM NVM NVM NVM NVM NVM NVM NVM NVM NVM NVM

In-memory DB

James Larus

How Not to Program NVM

8

Transfer(Acct from, Acct to, Money amount) {
from->balance -= amount;

to->balance += amount;

}

Cache

Processor

NVM

James Larus

Programming NVM, version 1

9

Transfer(Acct from, Acct to, Money amount) {
from->balance -= amount;
to->balance += amount;
clflush(&from->balance); clflush(&to->balance);
sfence();

}

Processor

NVMCache

James Larus

Programming NVM, version 2

10

Transfer(Acct from, Acct to, Money amount) {
atomic {
from->balance -= amount;
to->balance += amount;
clflush(&from->balance); clflush(&to->balance);
sfence();

}
}

Processor

NVMCache

James Larus

DRAM

Processor

NVM

OS
Process

Persistent HeapTransient
Memory

NVM Usage

11James Larus

NVM Lifecycle

12

Terminate

Recover

Run1. Processes accesses NVM
with individual load and
store instructions

2. NVM must record a consistent
memory state before termination,
whether planned or unexpected

3. Need to ensure that NVM state is
consistent in the environment in
which execution restarts.

James Larus

When is NVM “Consistent”?

13

NVM Heap

Program

Transient
Memory

Restart

• NVM is consistent when restarted
program produces same output as
some execution of the program
without a premature termination

• In general, error recovery is difficult
if memory state does not satisfy
program invariants

• Programs transition between
invariant-satisfying states, but states
in between are inconsistent (and
impossible to recover)

• NVM should not be left in one of
these inconsistent states

James Larus

Similar to Concurrency

14

Program

Restart Program Program Program

Key difference: execution stops and only part of state is preserved. Some
parallelization optimizations (such as privatization) can cause errors.

James Larus

Durable Transactions

15

Transfer(Acct from, Acct to, Money amount) {
atomic {
from->balance -= amount;
to->balance += amount;

} //clflush(&from->balance); clflush(&to->balance); sfence();
}

James Larus

Software Transactional Memory

16

Program NVM Heap

Undo log – save contents of overwritten
memory locations, so they can be restored if
transaction fails

Redo log – save updated values, so they can
applied to memory if transaction succeeds

Log

James Larus

End of background

17James Larus

Outline

• Efficient Logging
• Checkpointing with InCLL
• NVM Recovery

James Larus 18

Efficient Logging

19

Head

Cohen, Friedman, Larus. Efficient Logging
in Non-Volatile Memory by Exploiting
Coherency Protocols. OOPSLA 2017.

Loc: 0xcfd100
Val: 0x1

Loc: 0xcfd104
Val: 0x1

Loc: 0xcfd108
Val: 0x1

James Larus

NVM, Caches, and Logging

20

Head

Loc: 0xcfd100
Val: 0x1

Loc: 0xcfd104
Val: 0x1

Loc: 0xcfd108
Val: 0x1

Loc: 0xcfd100
Val: 0x1

Loc: 0xcfd104
Val: 0x1

Loc: 0xcfd108
Val: 0x1

Head

Unordered
Write-Back

NVM

Cache

James Larus

NVM, Caches, and Logging

21

Head

Loc: 0xcfd100
Val: 0x1

Loc: 0xcfd104
Val: 0x1

Loc: 0xcfd108
Val: 0x1

Loc: 0xcfd100
Val: 0x1

Loc: 0xcfd104
Val: 0x1

Loc: 0xcfd108
Val: 0x1

HeadNVM

Cache

70-200 ns
latency
x2

Cache
Line
Flush

James Larus

NVM Consistency Model

• Assumption 1: If store instruction S1 becomes visible to other threads
before instruction S2, then the value written by S1 reaches the cache before
the value written by S2

• Assumption 2: A cache line is transferred from the cache to the NVM
atomically

• Persistent ordering
• !" #$% &'()*+ , !" #$% *'-.&- ,(!0) #$% !0

!" #$% !0
(explicit flush)

• !" #$% !0 ∧ 3 4" 5 3 40
4" #67 40

(granularity)

22James Larus

Validity Bit

23

Assume: log entry fits in cache
line (64 bytes) and at least
one bit (of 512) is unused

Log entry is valid if bit is set
(unset)

Requires only 1 cache flush

Loc: 0xcfd100
Val: 0x1
Valid: 0x1

Loc: 0xcfd104
Val: 0x1
Valid: 0x1

Loc: 0xcfd108
Val: 0x1
Valid: 0x0

Loc: 0xcfd100
Val: 0x1
Valid: 0x1

Loc: 0xcfd104
Val: 0x1
Valid: 0x1

Loc: 0xcfd108
Val: 0x1
Valid: 0x0

Valid: 0x1

Valid: 0x1

Cache
Line
Flush

James Larus

What If Validity Bit Does Not Fit?

• Randomization
• Initialize log memory with 64-bit random value
• Write log entry in order
• If last word is not random value, then entry is valid (with high probability)

• Flexible validity bit
• Find first bit different between old cache line and new value
• If bit exists, use it as validity bit (otherwise, doesn’t matter)
• Store bit position in external table

• Almost always can find validity bit
• x64 address have 15 unused bit at top and typically 2/3 unused bits at bottom

• More details and examples in paper

24James Larus

Performance

25

Single-Trip Persistent Set (STPS)
Two cache flushes (TwoRounds)

YCSB write heavy benchmark (50% writes)
James Larus

Outline

• Efficient Logging
• Checkpointing with InCLL
• NVM Recovery

James Larus 26

Checkpointing

27

OS
Process

NVM

DRAM

NVM

Checkpointing used in high-performance
computing (HPC)

Problems:
• Long pause while copying heap
• Recovery time proportional to

checkpoint interval

James Larus

Fine-Grain Checkpointing of Masstree

• Masstree is cache-efficient combination of trie and B+ tree
• Mao, Kohler, Morris. Cache craftiness for fast multicore key-value storage.

EuroSys ’12, 2012

• Used in Silo in-memory DB, key-value stores, etc.

• Make Masstree persistent by storing data structure in NVM

28

Cohen, Aksun, Larus. Fine-Grain
Checkpointing with In Cache Line
Logging. Submitted for Publication.

James Larus

Epochs

• Checkpoint with 64 ms epoch
• Masstree uses this interval for allocating/reclaiming nodes

• Execute wbinvd instruction to flush entire cache (to NVM)
• 430 – 550μs (< 1%)

• Failure during epoch causes execution to restart after previous epoch

• Need to undo changes written during a failed epoch
• In cache-line log (InCLL)
• Separate undo log for complicated, infrequent cases

29James Larus

Faisal Nawab, et al., Dalí: A
Persistent Hash Map, 2017.

Masstree Leaf Node

30

pe
rm
ut
at
io
nI
nC
LL

pe
rm
ut
at
io
n

no
de
Ep
oc
h

1
Ke
y
0

Ke
y
7

Ke
y
13

2 4

Va
lI
nC
LL
1

Va
l
0

Va
l
6

5

Va
l
7

Va
l
13

Va
lI
nC
LL
2

Ke
y
8

InCLL-p
InCLL-1

InCLL-2
Cache Line

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3

14 keys, values
(1 fewer than standard)

James Larus

Insert (With Empty Value Slot)

31

pe
rm
ut
at
io
nI
nC
LL

pe
rm
ut
at
io
n

no
de
Ep
oc
h

1
Ke
y
0

Ke
y
7

<e
mp
ty
>

2 4

Va
lI
nC
LL
1

Va
l
0

Va
l
6

5

Va
l
7

<e
mp
ty
>

Va
lI
nC
LL
2

Ke
y
8 .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3

map of empty keys

pe
rm
ut
at
io
n

ne
w
pe
rm
ut
at
io
n

ke
y

va
lu
e

If no empty slot, then split node
Use undo log for node splitting

James Larus

Delete

32

pe
rm
ut
at
io
nI
nC
LL

pe
rm
ut
at
io
n

no
de
Ep
oc
h

1
Ke
y
0

Ke
y
7

Ke
y
13

2 4

Va
lI
nC
LL
1

Va
l
0

Va
l
6

5

Va
l
7

Va
l
13

Va
lI
nC
LL
2

Ke
y
8 .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3

pe
rm
ut
at
io
n

ne
w
pe
rm
ut
at
io
n

James Larus

Update

33

pe
rm
ut
at
io
nI
nC
LL

pe
rm
ut
at
io
n

no
de
Ep
oc
h

1
Ke
y
0

Ke
y
7

Ke
y
13

2 4

Va
lI
nC
LL
1

Va
l
0

Va
l
6

5

Va
l
7

Va
l
13

Va
lI
nC
LL
2

Ke
y
8 .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3

Va
l
6

ne
w
Va
l
6

Encode index of
modified value into
unused bits in Val
pointer

James Larus

Sequences of Operations

34

pe
rm
ut
at
io
nI
nC
LL

pe
rm
ut
at
io
n

no
de
Ep
oc
h

1
Ke
y
0

Ke
y
7

Ke
y
13

2 4

Va
lI
nC
LL
1

Va
l
0

Va
l
6

5

Va
l
7

Va
l
13

Va
lI
nC
LL
2

Ke
y
8 .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3

Epoch in which permutation was checkpointed
• Only copy permutation when Epoch differs (once per epoch)
• Allows lazy restoration

Also encode epoch in unused bits

Mixed sequences of insert delete
require redo logging because InCLL
can only hold one value

James Larus

Performance

35James Larus

Performance (Added NVM Latency)

36James Larus

Outline

• Efficient Logging
• Checkpointing with InCLL
• NVM Recovery

James Larus 37

NVM Recovery

38

OS
Process

NVM

DRAM Persistent objects point to methods
• Code may be loaded at different

address because of ASLR,
debugger, profiler, code
changes, …

Persistent store may be mapped
to different virtual address

Persistent data must be consistent
in recovered process, as well as
being consistent when original
process failsCohen, Aksun, Larus. Object-

Oriented Recovery for Non-Volatile
Memory. OOPSLA 2018.

James Larus

Potential Inconsistencies

• Transient objects pointed to from NVM
• TCP sockets, locks, thread IDs, …

• Pointers between persistent objects if NVM mapped to different
location
• Pointers to code and read-only data if text segment mapped

differently

39James Larus

Previous Solutions

• Ignore the problem
• If NVM maps to different location, quit…

• Oops, there goes your data!
• If text maps differently, continue…

• Oops, there goes your data!
• If you use an old lock, fail…

• Oops, there goes your data!

• Use offsets between persistent objects instead of addresses
• Memory access becomes more expensive
• Requires extensive code changes

40James Larus

NVMReconstruction C++ Extension
struct kp_vt_struct {
kp_kvstore ∗parent; // back−pointer to parent kvstore
transient pthread_mutex_t ∗lock; // lock for this version table
...

reconstructor(kp_vt_struct∗ o) {
assert(kp_mutex_create("(∗new_vt)−>lock", &(o−>lock)) == 0);

}
}

void main() {
kp_vt_struct ∗new_vt = pnew kp_vt_struct;
...
pdelete new_vt;

}

41James Larus

Reconstructing an Object

42

Type

• Every persistent object has a type header
• LLVM extension

• Zero transient fields
• Relocate pointers

• Inter NVM
• To code and read-only data

• Run reconstructor function
Type

Similar to relocation in garbage collector, except…

James Larus

Failure During Relocation

43

Initial Execution

1000
Addr A

1100

1200

1300

1400

1500

Points to

Execution #2

Points to

Execution #3

Points to Addr of Δ Page exec. #

B

A

1330

Base Addr: 1000

B

C

A

1330

1430 1

2

3

+200

+100

0

1530

1530

1530

B

C

D

A

1330

1430

1530

Base Addr: 1100

Base Addr: 1200

Reconstruction Info

James Larus

Startup Latency

44

Lazy Reconstruction
• Use VM page protection to detect first access to object
• Reconstruct all objects on page

James Larus

Performance Overhead

45

Key-value store implemented in Atlas. 1GB NVM heap. YCSB write-heavy workload (50% writes).

James Larus

Conclusion

• NVM is persistent, directly accessible main memory
• Well suited for very large in-memory data structures (DB, graphs, etc.)

• Programs must be aware of “NVMness” to allow recovery

• Caches in existing memory systems make consistency expensive
• Key insight: memory consistently transfers entire cache line to NVM

• How much can we pack into a cache line?
• More than you think

• But, don’t forget recovery!

46James Larus

