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An historical snapshot of graph theory at that time 
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Prophetically, Sainte-Laguë understood that 
applications would play a future role.

This lecture formally launches our new book 
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Les Réseaux (ou Graphes)–André Sainte-Laguë (1926)

Springer (2021), xii+120 pp.

The term “the 0th book” came from Harald Gropp (1996)

I will trace some of the topics as they have evolved, especially as influenced by 
computing and informatics, including my own work in algorithmic graph theory.

Interspersed with the combinatorics, I will give stories and glimpses into the 
fascinating mathematical and non-mathematical career of André Sainte-Laguë.
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André Sainte-Laguë

• Perhaps best known historically for his method of parliamentary seat 
allocation, which he published in 1910, when he was 28 years old.  

• Known today as the Webster–Sainte-Laguë Method, proposed in 1832 
by the American statesman, Daniel Webster – it was first adopted in 
1842 for the U.S. House of Representatives. 

• The method is still used today in many countries around the world.

Born on April 20, 1882, in the village of Saint Martin Curton in southwest France,     

he graduated from the École Normale Supérieure in 1906, and taught high-school 

mathematics until the outbreak of World War I. 

He was mobilized into the infantry at the front for two years, receiving several medals. 

Wounded three times, Sainte-Laguë wrote that 

he took advantage of ‘trench recreation time’ 

and his stays in military hospitals, 

to pursue mathematical research on graphs and topology.



André Sainte-Laguë

After World War I, Sainte-Laguë returned to teaching mathematics 

at the Lycée Pasteur de Neuilly-sur-Seine, while continuing his 

research and completing his doctorate in June 1924. 

From 1917 to 1919, Sainte-Laguë worked on long-range shell studies 

in the Department of Inventions and at the laboratories at the École

Normale Supérieure.

Listed on his dissertation committee are the well-known French mathematicians 

Émile Picard (President), Émile Borel and Paul Montel (Examiners). 



André Sainte-Laguë

Jérôme Chastenet de Géry [234] has written, (translated from the original French):

His classes enjoyed considerable success, unequaled until then.

One of his lectures had up to 2500 listeners, forcing him to give it 

three times in the great 900-seat Paul Painlevé amphitheater at CNAM. 

His warm and loud voice filled the room, and his lectures were

lively, fast, and clear. 

` From 1928 onwards, he also used films for his geometry lessons. 



I.  Introduction and definitions

A network or graph is a set of vertices or points

joined by edges or lines connecting pairs of vertices.

Two drawings of the same graph.

What matters is only whether two vertices 

A and B are connected by an edge.

These two graphs are called regular – each vertex has the same number of neighbors.

Regular graphs is the topic of Chapter IV.  



The Petersen graph

The Danish mathematician, Julius Petersen (1839-1910), 

constructed the following graph, now bearing his name 

— the Petersen graph 

illustrating the smallest cubic graph with no isthmus that 

has edge-chromatic number greater than three.

Over the years, the Petersen graph and its generalizations 

have served as useful examples and counterexamples 

for many problems in graph theory.

• cubic graph — regular graph with vertex degree 3 

• no isthmus (bridge)————————————forbidden———

• edge-chromatic number greater than 3

— color the edges so touching edges have different colors. 
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William T. Tutte wrote in 1980:   (translated from the original French)

At Cambridge University, I found a work of Sainte-Laguë entitled

Les Réseaux (ou Graphes). There is a proof of Petersen’s theorem. 

I read.     I understood.     I filled the gaps. 

I even made a small improvement in the result of the text. 

‘Look at you,’ I said to myself, 

‘You can work on networks. 

Perhaps the theory of graphs will be your research topic in the future!’

Petersen’s Theorem. — A cubic graph with 

fewer than three leaf components is reducible.

Cubic graphs is the topic of Chapter V.  



Dénes Kőnig cites Les Réseaux (ou Graphes) several times in his own     

1936 book, Theorie der endlichen und unendlichen Graphen.
He mentions its extensive bibliography which was useful to him in investigating  

the development of early graph theory in the French mathematical literature.



• A tree is a connected graph in which there 
is always a unique chain of edges between 
any two vertices.

• A tree is a connected graph with no cycles.

chain cover =  trait (d’un arbre):
A subset of chains (or paths) such that

each edge belongs to exactly one chain.

II. Trees



A typical counting result – In a tree T,

let m2 , m3 , … , mp be the numbers of internal nodes of even degree: 4, 6, . . . , 2p, 

and n2 , n3 , … , nq be the numbers of internal nodes of odd degree: 3, 5 , . . . , 2q + 1.

The cardinality T of a chain cover of  T is

• S.-L. includes dozens of such counting problems, 

mostly from cited papers and many of his own results.

As stated, the problem is ambiguous – but that is not important !

• It led researchers to define and study dozens of new covering problems on graphs.

• These raised hundreds of optimization variations and algorithmic questions

enough for 10,000 Ph.D. students.

Let’s mention just one of these variations from 2008.



Covering a Tree by a Forest

Fanica Gavril and Alon Itai

In Springer LNCS 5420, (M. Lipshteyn et al. , eds.), pp. 66–76, 2009.

Consider a tree T  and a forest  F  (a collection of trees).

Forest vertex-cover problem (FVC): cover the vertices of T  by a minimum number of 
copies of trees of F, such that every vertex of T is covered exactly once. 

Forest edge-cover problem (FEC): cover the edges of  T  by a minimum number of 
copies of trees of F, such that every edge of T is covered exactly once. 

Two versions of FVC are considered: ordered covers and unordered covers 

Both have polynomial-time algorithms.

Two versions of FEC are considered: ordered covers and unordered covers 

Both are NP-complete.

Another version of FEC, consecutive covers, is polynomial-time.



Trees Glorious Trees

In mathematics: 

rooted and unrooted trees, bifurcating trees, 
random trees, multidimensional trees, 
Steiner trees, graceful trees and Catalan 
numbers to count trees.  

In computer science: 

binary/ternary/quad trees, splay trees, 

B trees, red-black trees, parse trees, 

AVL trees, electrical nets and a dozen 

species of search trees and spanning trees.

Donald Knuth: “Trees sprout up just about everywhere in computer science.”

Trees are pervasive – they are everywhere 

-- the most important family of graphs. 

In operations research and economics: decision trees and game trees

In genealogy: matrilineal descent and patrilineal descent family trees

In biology: evolutionary trees and phylogenetic trees 

In chemistry: molecular trees and Gutman trees, benzenoid trees.



André Sainte-Laguë

Sainte-Laguë was a pioneer of new educational 

technologies for teaching, promoting areas of 

recreational mathematics, and making mathematics 

accessible and understandable to the general public.

An actual classroom slide used by Sainte-Laguë 

to show the tree structure exhibited by sea corals.



Some problems on trees that have interested me

Let  P be a set of paths {Pi} on a tree T  (i = 1, … , n) . 

We may consider several types of “interaction” between a pair of paths Pi and Pj

• Pi and Pj INTERSECT (share at least one vertex of the tree)

Intersection graph of paths in a tree: V(G) =  {1, … , n} 

vi vj∈ E precisely when paths  Pi ∩ Pj   (share a vertex in T )

These are called  path graphs (Gavril, 1978)   or  VPT graphs. 

• Pi and Pj EDGE INTERSECT (share at least one edge of the tree)

Edge intersection graph of paths in a tree: V(G) =  {1, … , n} 

vi vj∈ E precisely when paths  | Pi ∩ Pj |  2  (share an edge in T )

These are called  EPT graphs (Golumbic and Jamison, 1985)

• Pi and Pj k-EDGE INTERSECT (share at least  k  edges of the tree)

vi vj∈ E precisely when paths  | Pi ∩ Pj |   k + 1  (share k edges in T )

These are called  k-EPT graphs (Golumbic, Lipshtein and Stern, 2005)



Containment graphs of Paths in a Tree (CPT)

Let  P be a set of paths {Pv | v ∈ V(G)} on a tree T. 

CPT Graph:   vw ∈ E precisely when one of Pv or Pw contains the other. 

CPT Order: v ≺ w precisely when  Pv  Pw 

Remark. The order  ≺ gives 
a transitive orientation of G.

that is, if  a  b and  b  c

then  a  c

Remark. Odd cycles have no 
transitive orientation.



The CPT property is NOT a Comparability Invariant

Definition: A property of an ordered set is a comparability invariant if all transitive

orientations a given comparability graph have that property or none have that property.

The poset dimension is a well-known comparability invariant, that is,

dim(P) = dim(Q) whenever P and Q have the same comparability graph.

A proof of this result can be found in Chapter 7 of the book Tolerance Graphs.

Other invariant properties include:

interval order dimension, unit interval orders,

box containment orders, semi-orders, 

jump number, bounded tolerance and 

bitolerance orders, unit tolerance,

unit bitolerance orders and many more.

However, Corneil and Golumbic [1984],

observed that being a CPT order is not a

comparability invariant, as demonstrated

by the wheel W2k (k ≥ 3).



The CPT property is NOT a Comparability Invariant

In the 6-wheel W6

its central vertex must be a sink

in any CPT representation.

Proof. If c is a source, then its path Pc
contains the paths P1, P2, P3, P4, P5, P6 .

So they are intervals on the path Pc
inducing C6. This cannot happen since

C6 is not an interval containment graph.

c



Partial Wheels as CPT Graphs

Definition:  A  partial wheel is a wheel “missing some spokes”, that is, 

a chordless cycle and a central vertex adjacent to some but not all cycle vertices.

First Question:  

(a) Which partial wheels have a transitive orientation? 

(b) Which of those also admit a CPT representation? 

First Result: All partial wheels that admit a TRO are CPT.

Two Goals:  

Characterize the CPT orders whose comparability graph is a partial wheel.

Characterize the partial wheels for which every TRO is a CPT order.

Golumbic and Limouzy (Order, 2021), 

Containment graphs and posets of paths in a tree: wheels and partial wheels.



Partial Wheels as CPT Graphs

Theorem A.  Let W be a partial wheel. The following conditions are equivalent:

(1) W has a transitive orientation,

(2) W is a containment graphs of paths in a tree,

(3) the outer-cycle of W is of even length, and either

(a) the central vertex is adjacent to exactly two consecutive outer vertices, or

(b) all maximal sets of consecutive neighbors 

and of consecutive non-neighbors of the central vertex

are of odd length.

(b)

x

(a)



Some forbidden induced subgraphs for CPT graphs

consequences of our next result



Theorem B.  For wheels and partial wheels, the following characterizes their 

containment orders of paths in a tree.

(1) For the full wheel W2k (k ≥ 3), the only transitive orientation which is CPT 
is that with the central vertex as a sink.

(2) For an even length partial wheel with the central vertex adjacent to exactly 2 
consecutive vertices, there are two transitive orientations and both are CPT.

(3) For an even length partial wheel with the central vertex adjacent to exactly 3 
consecutive vertices, there are four transitive orientations and all are CPT.

For any other partial wheel W of even length at least 6 satisfying 
condition (3)(b) of Theorem 1, we have the following:

(4) If the gaps of  W are all of length 1, then the only transitive orientation 
which is CPT is that with the central vertex as a sink.

(5) Otherwise, there are two transitive orientations: with the central vertex as either a

sink or source, and both are CPT.

Characterizing CPT orders



Other CPT Results and Open Questions

1. Characterizing the CPT graphs and the CPT orders remain as open questions.

2. The same questions for bipartite CPT graphs. 

3. For which CPT graphs will all transitive orientations admit CPT representations? 

4. For which other comparability graphs will only one TRO be CPT and not its reversal,      
as in the case of full wheels?

5. Alcón, et al. (2018) characterized CPT split orders by a family of forbidden subposets. 
Similarly, questions of characterization and complexity can be asked about other 
subfamilies of CPT graphs and orders.

6. A CPT order P is called dually-CPT if both P and its dual Pd are CPT orders. 

Characterize the dually-CPT orders.  For example, in our Theorem B, statements (2) and (4) 
together characterize the dually-CPT orders of partial wheels. 

Characterize other subfamilies.



S.-L. (1926): “It seems that main applications of this branch

of mathematics will be in Physical Chemistry or Organic Chemistry

-- the composition of matter and the structure of crystals seem to

depend on graph theory, and the study of paraffins has given rise to

interesting research.”

Applications of Graph Theory

It is “used in the study of many games, invariants, determinants, analytic 

forms, arithmetic, groups of substitutions and permutations.”

S.-L. does not mention electric circuits, even though
an 1847 reference to Kirchhoff appears in his Bibliography. 

Why are there so many variations of these problems?



This changed dramatically by 1958 when Claude Berge published
his book Théorie des graphes et ses applications.

Then came computer science, 

operations research, and the

algorithms revolution

1960-1980.

Marty (2021):  But it is doubtful that anyone in 1926 with a passion 

for mathematics, science, or technology, could have imagined 

the Voyages Extraordinaires that graph theory has taken since.

Applications of Graph Theory



III. Chains and cycles               
Eulerian chains and cycles

Does a given graph G admit a chain or cycle 

passing through every edge exactly once?

S.-L. (1926) writes, 

“This question was first asked by Euler, 

(The Bridges of Königsberg Problem, 1736)

but must have been known before, as shown,

for instance, by the legend of the Signature of Mohammed, 

which he traced with a tip of his sabre.”



S.-L. (1926) writes, 

“This question was first asked by Euler, 

[The Bridges of Königsberg Problem, 1736]

but must have been known before, as shown,

for instance, by the legend of the Signature of Mohammed, 

which he traced with a tip of his sabre.”

III. Chains and cycles               
Eulerian chains and cycles

RED:  A  to  B
BLACK: B  to  C
BLUE:   C  to  D
GREEN:  D  to  E
BLUE:   E  to  C
BLACK: C  to  A

A

B

C

D

E

Does a given graph G admit a chain or cycle 

passing through every edge exactly once?



III. Chains and cycles               
Eulerian chains and cycles

Does a given graph G admit a chain or cycle 

passing through every edge exactly once?

S.-L. (1926) writes, 

“This question was first asked by Euler, 

[The Bridges of Königsberg Problem, 1736]

but must have been known before, as shown,

for instance, by the legend of the Signature of Mohammed, 

which he traced with a tip of his sabre.”

S.-L. (1926) writes,  At the heart of such a study is the following obvious theorem: 

The number of odd degree vertices of a graph is even.

He then correctly states:WHAT’s WRONG?   

Eulerian chains exist in a connected graph if and only if 

the number of odd vertices is 0 or 2.



“Fleury (1883) gave a practical procedure that allows us

to find an ‘entrelacement’ (an Eulerian chain or cycle) 

in a given graph.”

S.-L. also writes, 

Commentary. 

Fleury’s algorithm to compute Eulerian chains and cycles is still 

well known today.

Carl Hierholzer (1873) provides a different method for finding 

Eulerian chains and cycles.

Interestingly, S.-L. lists Hierholzer’s paper in his Bibliography, but 

never mentions the paper in the text.



A labyrinth can obviously be represented by a graph. 

Trémaux has shown that one can theoretically find a way out of a labyrinth —

that is, follow all edges in a graph, whose structure is unknown, 

by applying a set of rules that he provided.

S.-L. writes, 

Labyrinths

Charles Pierre Trémaux 1859-1882

Generally credited as being 

the inventor of Depth-First Search (DFS).

Lucas refers to him as an ex-student 

of the École Polytechnique

and a telegraph engineer.

He gives a full description of the method.



Commentary. Labyrinths, mazes and depth-first search

• A very entertaining account of Trémaux’s method appears in

Édouard Lucas (1882), The Game of Labyrinths (Le jeu des labyrinthes)

• S.-L. seems not to have known about an earlier paper by 

Christian Wiener (1873).

• We should have expected S.-L. to cite two works by Tarry in his bibliography:
Parcours d’un labyrinthe rentrant (1886); Le problème des labyrinthes (1895)

• English translations of these classical works, and the rigorous chapter                          

The Labyrinth Problem from Kőnig’s book 

can be found at Michael Behrend’s website --

https://www.cantab.net/users/michael.behrend/repubs/maze_maths/pages/index.html



The number of Eulerian cycles in a graph

S.-L.: “Delannoy, Tarry and Lucas have calculated the number of 
distinct Eulerian cycles in a given graph.”

He then presents many such counting results for various types of graphs. 

Let us remark (Métrod, 1917) that the number of Eulerian chains in a graph with 
3 vertices connected pairwise by a, b, and c edges, respectively, either all even 
or all odd, is 

where k in the sum takes values of the same parity as a, b, and c, 

taking successively the values up to the smaller of the numbers b and c.



You might ask,

Marty, Why did you write this book, and 

what do you think people will get out of 

reading the book?



VI. Tableaux  

Incidence Matrices and Semi-regular matrices (Tissus)

tissu — the term used by S.-L. for a binary matrix with constant row and column sums.

In French, tissu means fabric or cloth.  WHAT does this have to do with a matrix?

The matrix might remind one of woven textiles. 

Lucas introduced the topic of géométrie du tissage in his papers 1867-80 

inspired by principles of weaving fabric with rectilinear threads.

The term “semi-regular matrix” was introduced by Brualdi (1980).

Commentary. The geometry of fabrics has become a well-studied area, 

branching off into many mathematical directions of research. 

See the papers of Grünbaum and Shephard, Beauville, and the extensive 

1999 bibliography by Joseph Malkevitch. 

the number of 1s in 

each row is constant, 

and 

the number of 1s in 

each column is constant



Commentary. Tissus, mosaïques, et échiquiers

Anne-Marie Décaillot (2002), The geometry of fabrics, mosaics, chessboards: 

Curious and useful mathematics 

In the second half of the nineteenth century, a group of mathematicians, 

driven by a common ambition of disseminating science to a wide audience, 

began to treat mathematical questions originating in concrete problems. 

One of their favorite techniques was to employ the well-known common chessboard.       

It suggested Lucas’s geometry of fabrics with connections to number-theory. 

Then came Laisant’s construction of mosaics related to finite groups and crystallography. 

James Joseph Sylvester’s analagmatic chessboards represented examples of recreational 

mathematics before their transformation into matrices attracted Jacques Hadamard.

In this same spirit, André Sainte-Laguë was influenced by the work of these

nineteenth century mathematicians. He continued carrying this message of

making mathematics popular throughout his career.



S.-L. writes,

For small values of n, bipartite cubic graphs are Hamiltonian, but this is not true for any n, 

moreover, every graph with an isthmus is not Hamiltonian.

If we examine the simplest regular graphs, we find that 

for degree 2, they are all Hamiltonian. 

The degree 3 graphs are Hamiltonian graphs for n = 4, 6, 8; 

for n = 10, out of 19 graphs, two are not Hamiltonian, of which one has an isthmus; 

for n = 12, out of 80 graphs, five are not Hamiltonian, of which four have an isthmus.

For degree 4,  n = 5, 6, 7, 8, 9 give 16 graphs, all Hamiltonian,

and n = 10 gives 57, of which two are not Hamiltonian.

VII. Hamiltonian graphs -- Réseaux cerclés, in the terminology of S.-L.

A graph is Hamiltonian  (cerclé, in the terminology of S.-L.) 

if it admits a cycle that goes through all the vertices of the graph.



The graph of the permutation, a regular Hamiltonian graph, of order n.

Circular permutations, additive permutations, inverse permutations, 

complementary permutations, reciprocal permutations 



The problem of postage stamps. — In Lucas [1891] we find the following question: 

In how many ways can one fold a strip of postage stamps? 

Despite its apparent simplicity, this question remains unsolved.

If we decide, before folding, to number the stamps 1, 2, …, n, then the folded

strip will give, from top to bottom, a certain permutation. We have to distinguish

permutations that can arise this way from those that cannot.

Update in:  Legendre S. (2014). Foldings and meanders, Australasian Journal of Combinatorics 58 (2) 275-291.



Stamps designed by the artist Edmond Henri Becker (20.07.1871 – 02.11.1971)



The 1924 Olympics were the first to use 

• the official marathon distance of 42.195 km (26.219 miles),                

fixed by the International Amateur Athletic Federation (IAAF) in May 1921, and

• the standard 50m pool with marked lanes. 

• During the games, British runners Harold Abrahams and Eric Liddell won 

the 100m and 400m events, respectively. Their stories are depicted in the 

1981 movie Chariots of Fire whose title is said to be inspired by the line, 

“Bring me my chariot of fire!”, from a William Blake poem, and the 

original Biblical phrase in II Kings 6:17.



VIII. Chessboard problems

Inspired by Ahrens, Lucas and Rouse-Ball and the 
“Anallagmatic” chessboards of Sylvester (1868).

The term “anallagmatic”, from the Greek for 

“unchanging”, refers to an object or structure 

that is not changed in form by inversion.

Sainte-Laguë: The points of the plane with integer 

coordinates form a graph that we can consider as 

an infinite chessboard (échiquier indéfini).

• The number of moves of a chess piece, and 
pairwise non-attacking rooks, queens, etc.

• Great queens, half-queens, half-bishops and 
1000 other unorthodox, unconventional 
chess pieces from the Middle Ages.

• Magic squares and Knight’s tours.



Is it possible to place 16 queens on a chessboard of 64 cells so that, on each 

row, column, or parallel to a diagonal, a queen attacks at most one other queen? 

This question assumes that there are two queens per row and per column, and leads to

double permutations such as the following one, 
which gives a solution to the problem [Ahrens, 156].

Problems on Queens

54212134

86673758

Commentary. An illustration of Sainte-Laguë’s

example of 16 queens.



On a chessboard of 49 cells [156], can we place 49 queens of 7 different colors 

so that no two queens of the same color attack each other. 

Another Problem on Queens

Commentary. 

A  B C D  E F  G
C D  E F  G A  B
E F  G A  B C D
G A  B C D  E F
B C D  E F  G A
D  E F  G A  B C
F  G A  B C D  E

Yes:  Subsequent rows are deduced 

by the circular permutations indicated 

by the colors of the first column: 

A; C; E ;G; B; D; F.



1. How many knights do we need to place on a chessboard in order to attack all cells? 

2. Knight’s tour problem: How can we find all the chains 
[sets of moves] of a knight across a chessboard, so that 
it visits each cell once and only once? 

Problems on Knights

Algorithmically, the knight’s tour problem can be solved in linear time, 

unlike the general Hamiltonian problem which is NP-complete.

The classical solution of Euler:

5823621564215413

6116592255145120

2457106318491253

960175611521950

34253674027485

37833264561428

32352393043447

13831443462942

Robin Wilson comments: The problem is over 800 years old, and

was solved pre-Euler. Euler was the first to study it mathematically..

3. How many knight’s tours are there?



“Modern Methods”

Section 82. Modern methods.— An ingenious solution 

to the problem of Euler was given by Warnsdorff ….

Sainte-Laguë 
in 1926:

Another interesting method is one of Roget.



Numbering the cells in the order passed through by the knight obtaining a 

magic square: the sum in each row or column, but not a diagonal, is constant.

Example:  Constant equal to 260.

Knight’s tour magic square

• Investigated first by William Beverley (1848), then
Carl Wenzelides (1849), Krishnaraj Wadiar (1850s),
C. F. de Jaenisch (1862) and E. Francony (1882).

• Extensive histories of knight's magic tours are given by
Murray (1951) and by George Jelliss (2002) at 
https://www.mayhematics.com/t/1h.htm

• There are a total of 140 distinct magic knight's tours 
on the 8 x 8  board -- completed  by an exhaustive 
computer enumeration, software written by J. C. 
Meyrignac (August 2003), see http://magictour.free.fr/

https://www.mayhematics.com/t/1h.htm


His first commission as a 

professional binder was for a book 

of photographs by Tom Moore, 

presented to Queen Elizabeth II    

by the government of Ontario      

for her silver jubilee in 1977.

Yehuda Miklaf
- Jerusalem artist and Bookbinder



MathWorld Headline News August 6, 2003, by Eric W. Weisstein

There is no 8 x 8 FULLY diagonal magic knight's tour possible:  
that is, the diagonals must also sum to the magic constant.

What?  ! ! !

A 150-year-old unsolved problem – finally has been answered by software written by 
J. C. Meyrignac, see the website http://magictour.free.fr after 61.40 CPU-days, 
corresponding to 138.25 days of computation at 1 GHz, 

There Are No Magic Knight's Tours on the Chessboard

https://mathworld.wolfram.com/news/
http://magictour.free.fr/


André Sainte-Laguë in 1937

You can visit it today at the Grand Palais in Paris, 

including the famous Pi Room.

Sainte-Laguë was entrusted by Émile Borel with the organization of 

the mathematics rooms in the Palais de la Découverte (Palace of

Discovery), the science museum created for the 1937 Paris Exposition. 



Also a film, De la similitude des longueurs et des vitesses 

(Similarities between length and speed) was written by 

André Sainte-Laguë and directed by Jean Painlevé.



Historical Note:   Jean Painlevé

A filmmaker, well-known for his scientific documentaries

https://jeanpainleve.org/ 

Son of Paul Painlevé, a mathematician and twice prime-minister of France, 

who appointed Émile Borel as Minister of Marine during his second

(7 month) prime-ministry in 1925.



Sainte-Laguë published several works with his colleague Antoine Magnan, 

on the aerodynamics and flights of birds, gliders, and planes, and an essay on 

the motion of fish in the 1930s. 

His 1937 book, Avec des Nombres et des Lignes: Récréations Mathématiques, 

was reprinted in 1994 and 2001, edited by André Deledicq and Claude Berge.

He also wrote about the symmetries of nature, the world of form, and 

authored the book, From Man to Robot, 1953.



Geometric figures from Sainte-Laguë (1929)

Géométrie de Situation et Jeux

Conclusion  S.-L.:

The study of graphs can be pursued in many different ways, 

and each of the notions defined may initiate new research. 

We have investigated, to the best of our ability, the 

complexity of issues that are raised, and the variety of methods 

that have been employed and are indispensable. 

The subject, as limited as it may appear at first, is in fact 

vast and seems quite difficult. The research of Lucas and Tarry 

relate immediately to the theory of networks and graphs. 

Other applications of more immediate utility could also be 

considered. There is further work already started on planar graphs, 

and practical applications of graphs, as well as many questions 

involving higher arithmetic, topology, and game theory.
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